References
<A NAME="RG23005ST-1A">1a</A>
Comprehensive Heterocyclic Chemistry II
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon Press;
Oxford:
1996.
<A NAME="RG23005ST-1B">1b</A>
Laschat S.
Liebigs Ann./Recl.
1997,
1 ; and references cited therein
<A NAME="RG23005ST-2A">2a</A>
Fioravanti S.
Morreale A.
Pellacani L.
Tardella PA.
Synthesis
2001,
1975
<A NAME="RG23005ST-2B">2b</A>
Colantoni D.
Fioravanti S.
Pellacani L.
Tardella PA.
Org. Lett.
2004,
6:
197
<A NAME="RG23005ST-3">3</A>
Fioravanti S.
Morreale A.
Pellacani L.
Tardella PA.
Synlett
2004,
1083
<A NAME="RG23005ST-4A">4a</A>
Huisgen R.
Scheer W.
Huber H.
J. Am. Chem. Soc.
1967,
89:
1753
<A NAME="RG23005ST-4B">4b</A>
Baldwin JE.
Pudussery RG.
Qureshi AK.
Sklarz B.
J. Am. Chem. Soc.
1968,
90:
5325
<A NAME="RG23005ST-5">5</A>
Texier-Boullet F.
Foucaud A.
Tetrahedron Lett.
1982,
23:
4927
<A NAME="RG23005ST-6">6</A>
Typical Experimental Procedure.
All compounds were synthesized with a Carousel Reaction Station from Radleys Discovery
Technologies (U.K.). To the obtained 2-alkylidene 3-oxo nitriles in CH2Cl2, CaO and nosyloxycarbamates were added in the amounts reported in Table
[1]
. After completion (TLC and GC analyses), the crude reaction mixtures were filtered
through plugs of silica gel using a 9:1 hexane-EtOAc mixture and the 2,5-disubstituted
4-cyano 2,3-dihydrooxazoles were obtained after solvent removal.
Selected spectral data of new compounds.
Compound 13: yellow oil. IR (CCl4): 2223, 1714, 1630 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.94 (t, J = 7.2 Hz, 3 H), 1.28 (s, 9 H), 1.67-1.78 (m, 2 H), 5.23 (s, 2 H), 5.97 (t, J = 5.4 Hz, 1 H), 7.30-7.48 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 10.7, 23.7, 27.8, 40.9, 69.2, 91.0, 95.3, 116.4, 128.1, 128.3, 128.8, 135.1,
152.1, 157.9. GCMS: m/z (%) = 314 (2) [M+], 179 (11), 137 (27), 91 (100), 57 (15). HRMS (ES Q-TOF): m/z calcd for C18H23N2O3 [M + H]+: 315.1709; found: 315.1601.
Compound 18: yellow oil. IR (CCl4): 2218, 1717, 1645 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.01 (d, J = 6.6 Hz, 3 H), 1.02 (d, J = 6.6 Hz, 3 H), 1.36 (t, J = 7.2 Hz, 3 H), 1.68-1.74 (m, 2 H), 1.87-1.92 (m, 1 H), 4.29 (q, J = 7.2 Hz, 2 H), 6.24 (dd, J = 6.6 Hz, 1 H), 7.40-7.53 (m, 3 H), 7.84-7.87 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 14.1, 22.4, 22.7, 23.4, 42.8, 63.0, 90.9, 93.7, 114.7, 125.9, 126.3, 128.6,
128.7, 131.3, 152.7, 156.3. GCMS: m/z (%) = 300(7) [M+], 227 (12), 171 (53), 145 (14), 105 (100), 77 (32). HRMS (ES Q-TOF): m/z calcd for C17H21N2O3 [M + H]+: 301.1552; found: 301.1546.
<A NAME="RG23005ST-7A">7a</A>
Pihuleac J.
Bauer L.
Synthesis
1989,
61
<A NAME="RG23005ST-7B">7b</A>
Hanessian S.
Johnstone S.
J. Org. Chem.
1999,
64:
5896
<A NAME="RG23005ST-7C">7c</A>
Fioravanti S.
Marchetti F.
Morreale A.
Pellacani L.
Tardella PA.
Org. Lett.
2003,
5:
1019
<A NAME="RG23005ST-7D">7d</A>
Fioravanti S.
Colantoni D.
Pellacani L.
Tardella PA.
J. Org. Chem.
2005,
70:
3296
<A NAME="RG23005ST-8">8</A> The formation of the unstable 2,3-dihydroisoxazole (4-isoxazoline) (IV, Figure 1), as the precursor of aziridine I shown in the Scheme 2, is not supported by any experimental evidence. For a recent
example of 2,3-dihydroisoxazoles as synthons for 2-acyl aziridines see:
Ishikawa T.
Kudoh T.
Yoshida J.
Yasuhara A.
Manabe S.
Saito S.
Org. Lett.
2002,
4:
1907
<A NAME="RG23005ST-9">9</A>
Lopez-Calle E.
Keller M.
Eberbach W.
Eur. J. Org. Chem.
2003,
1438
<A NAME="RG23005ST-10A">10a</A>
Lown JW.
Smalley RK.
Dallas G.
J. Chem. Soc., Chem. Commun.
1968,
1543
<A NAME="RG23005ST-10B">10b</A>
Lown JW.
Matsumoto K.
Can. J. Chem.
1970,
48:
3399
<A NAME="RG23005ST-10C">10c</A>
Person H.
Luanglath K.
Baudru M.
Foucaud A.
Bull. Soc. Chim. Fr.
1976,
1989
<A NAME="RG23005ST-10D">10d</A>
Freeman JP.
Chem. Rev.
1983,
83:
241
<A NAME="RG23005ST-11A">11a</A>
Najera C.
Sansano JM.
Curr. Org. Chem.
2003,
7:
1105
<A NAME="RG23005ST-11B">11b</A>
Eberbach W.
Methods of Molecular Transformations, In Science of Synthesis (Houben-Weyl)
Vol. 27:
Padwa A.
Georg Thieme Verlag;
Stuttgart:
2004.
p.441
<A NAME="RG23005ST-12">12</A>
With respect to 13,
[6]
the 1H NMR spectrum of the crude mixture shows additional frequencies at δ = 1.12 (t, J = 7.2 Hz, 3 H), 1.31 (s, 9 H), 1.83-1.98 (m, 2 H), 2.90 (t, J = 6.6 Hz, 1 H), 5.08-5.20 (m, 2 H). In particular the signal at δ = 2.90 is typical
of an aziridine proton.
<A NAME="RG23005ST-13">13</A> We reported that stable polyfunctionalized 2-acyl aziridines were obtained using
nosyloxycarbamates and a Wittig reaction led us to interesting alkenyl aziridines.
See:
Fioravanti S.
Morreale A.
Pellacani L.
Tardella PA.
Mol. Diversity
2003,
6:
177
<A NAME="RG23005ST-14A">14a</A>
Vedejs E.
Grissom JW.
J. Am. Chem. Soc.
1988,
110:
3238
<A NAME="RG23005ST-14B">14b</A>
Vedejs E.
Monahan SD.
J. Org. Chem.
1997,
62:
4763
<A NAME="RG23005ST-15A">15a</A>
Jones WD,
Ciske FL,
Dinerstein RJ, and
Diekema KA. inventors; U.S. 6004959.
; Chem. Abstr. 1999, 132, 35524
<A NAME="RG23005ST-15B">15b</A>
Hanaki N, and
Goto T. inventors; Jpn. Kokai Tokkyo Koho, JP 2000273333.
; Chem. Abstr. 2000, 133, 268226
<A NAME="RG23005ST-15C">15c</A>
Hanaki N, and
Goto T. inventors; Jpn. Kokai Tokkyo Koho, JP 2000275773.
; Chem. Abstr. 2000, 133, 288779
<A NAME="RG23005ST-16">16</A>
Caiazzo A.
Dalili S.
Picard C.
Sasaki M.
Siu T.
Yudin AK.
Pure Appl. Chem.
2004,
76:
603